
Vector Search with Kai
Notebook

Vector Search with Kai
In this notebook, we load a dataset into a collection, create a vector index and perform vector searches using Kai in a way that is compatible with MongoDB clients and applications
In [1]:
1
!pip install datasets --quiet
In [2]:
1
import os2
import pprint3
import time4
import concurrent.futures5
import datasets6
from pymongo import MongoClient7
from datasets import load_dataset8
from bson import json_util
1. Initializing a pymongo client
In [3]:
1
current_database = %sql SELECT DATABASE() as CurrentDatabase2
DB = current_database[0][0]3
COLLECTION = 'wiki_embeddings'
In [4]:
1
# Using the environment variable that holds the kai endpoint2
client = MongoClient(connection_url_kai)3
collection = client[DB][COLLECTION]
2. Create a collection and load the dataset
It is recommended that you create a collection with the embedding field as a top level column for optimized utilization of storage. The name of the column should be the name of the field holding the embedding
In [5]:
1
client[DB].create_collection(COLLECTION,2
columns=[{ 'id': "emb", 'type': "VECTOR(768) NOT NULL" }],3
);
In [6]:
1
# Using the "wikipedia-22-12-simple-embeddings" dataset from Hugging Face2
dataset = load_dataset("Cohere/wikipedia-22-12-simple-embeddings", split="train")
In [7]:
1
DB_SIZE = 50000 #Currently loading 50k documents to the collection, can go to a max of 485,859 for this dataset2
insert_data = []3
insert_count = 04
# Iterate through the dataset and prepare the documents for insertion5
# The script below ingests 1000 records into the database at a time6
for item in dataset:7
if insert_count >= DB_SIZE:8
break9
# Convert the dataset item to MongoDB document format10
doc_item = json_util.loads(json_util.dumps(item))11
insert_data.append(doc_item)12
13
# Insert in batches of 1000 documents14
if len(insert_data) == 1000:15
collection.insert_many(insert_data)16
insert_count += 100017
print(f"{insert_count} of {DB_SIZE} records ingested")18
insert_data = []19
20
21
# Insert any remaining documents22
if len(insert_data) > 0:23
collection.insert_many(insert_data)24
print("Data Ingested")
A sample document from the collection
In [8]:
1
sample_doc = collection.find_one()2
pprint.pprint(sample_doc, compact=True)
3. Create a vector Index
In [9]:
1
client[DB].command({2
'createIndexes': COLLECTION,3
'indexes': [{4
'key': {'emb': 'vector'},5
'name': 'vector_index',6
'kaiSearchOptions': {"index_type":"AUTO", "metric_type": "EUCLIDEAN_DISTANCE", "dimensions": 768}7
}],8
})
Selecting the query embedding from the sample_doc selected above
In [10]:
1
# input vector2
query_vector = sample_doc['emb']
4. Perform a vector search
In [11]:
1
def execute_kai_search(query_vector):2
pipeline = [3
{4
'$vectorSearch': {5
"index": "vector_index",6
"path": "emb",7
"queryVector": query_vector,8
"numCandidates": 20,9
"limit": 3,10
}11
},12
{13
'$project': {14
'_id':1,15
'text': 1,16
}17
}18
]19
results = collection.aggregate(pipeline)20
return list(results)
In [12]:
1
execute_kai_search(query_vector)
Running concurrent vector search queries
In [13]:
1
num_concurrent_queries = 2502
start_time = time.time()3
4
with concurrent.futures.ThreadPoolExecutor(max_workers=num_concurrent_queries) as executor:5
futures = [executor.submit(execute_kai_search, query_vector) for _ in range(num_concurrent_queries)]6
concurrent.futures.wait(futures)7
8
end_time = time.time()9
print(f"Executed {num_concurrent_queries} concurrent queries.")10
print(f"Total execution time: {end_time - start_time} seconds")11
12
for f in futures:13
if f.exception() is not None:14
print(f.exception())15
failed_count = sum(1 for f in futures if f.exception() is not None)16
print(f"Failed queries: {failed_count}")
This shows the Kai can create vector indexes instantaneously and perform a large number of concurrent vector search queries surpassing MongoDB Atlas Vector Search capabilities

Details
About this Template
Run Vector Search using MongoDB clients and power GenAI usecases for your MongoDB applications
This Notebook can be run in Standard and Enterprise deployments.
Tags
License
This Notebook has been released under the Apache 2.0 open source license.
See Notebook in action
Launch this notebook in SingleStore and start executing queries instantly.